

UT III Sesión 6 Regulación de los ejes neuroendocrinos (ratas "virtuales")

Propósito general:

Promover por medio del uso de "experimentos virtuales" el aprendizaje activo del tema de regulación de los ejes neuroendocrinos. Para esta actividad los alumnos tendrán que diseñar un experimento, colectar datos, analizarlos e interpretarlos, sin la necesidad de usar animales vivos

Propósitos específicos.

- El alumno comprenderá los mecanismos de regulación presentes en los ejes neuroendocrinos.
- El alumno aplica lo aprendido para diseñar un experimento, analizar los datos y resolver una pregunta

Resultados de Aprendizaje.

- El alumno identifica una hormona desconocida al observar que efecto tiene (hipertrofia/hipotrofia) sobre sus órganos blanco.
- El alumno comprende cómo se da la regulación de los ejes neuroendocrinos.
- El alumno entiende los efectos de varias hormonas en diferentes órganos blanco

•

Introducción.

Nota: asegúrate de comprender claramente los <u>conceptos clave subrayados</u> y responde las preguntas de consolidación que se plantean.

El sistema endócrino y el sistema nervioso comparten la función de ser sistemas de comunicación. Sin embargo, en el sistema nervioso se utilizan <u>neurotransmisores</u> que típicamente se liberan directamente en el blanco a través de las sinapsis, esto permite una gran <u>especificidad</u> y <u>localización</u> de la señal, además las señales transmitidas por el sistema nerviosos tienen una duración breve. El sistema endócrino utiliza <u>hormonas</u> como mensajeros. Las hormonas se liberan al torrente sanguíneo en vez de liberarse directamente en el blanco, así pues, la señal es más <u>difusa</u> y puede tener efectos más <u>duraderos</u>. Conocer para cada hormona los mecanismos de síntesis, liberación, transporte, activación de sus receptores, y mecanismos de regulación es fundamental para entender cómo se mantienen las variables fisiológicas en rangos normales y cómo alteraciones hormonales pueden producir condiciones patológicas que cursan con hipo o hiperfunción de los órganos blanco de los sistemas endocrinos.

1) ¿Cómo consigue el sistema endócrino lograr especificidad si las hormonas se liberan al torrente circulatorio?

Las hormonas se clasifican en diferentes <u>tipos de acuerdo con su estructura química</u> (peptídicas, esteroideas, derivadas de aminoácidos) y tienen diferentes <u>tipos de receptores</u> en su célula blanco (receptores de membrana, receptores citoplasmáticos o receptores nucleares).

2) Para cada una de las categorías de hormonas: da un ejemplo, describe cómo se sintetiza, donde se almacena, qué tipo de receptor tiene, cuál es su mecanismo de acción, cuáles son sus órganos blancos, cuál es su efecto biológico y quién estimula su secreción.

El hipotálamo es considerado el regulador central de muchas hormonas y guarda una estrecha relación con la glándula hipófisis o pituitaria (llamada en muchos textos "glándula maestra"). Dos tipos de <u>neuronas magnocelulares</u> (de tamaño grande) localizadas en el núcleo paraventricular y supraóptico producen vasopresina y oxitocina, los axones de estas neuronas terminan en la neurohipófisis donde liberan su contenido al torrente circulatorio.

3) ¿Cuáles son los órganos afectados por las hormonas vasopresina (hormona antidiurética) y oxitocina?

Por otro lado otras neuronas <u>hipotalámicas parvocelulares</u> (de tamaño pequeño), producen y liberan hormonas en la eminencia media (el piso del hipotálamo), éstas hormonas alcanzan la hipófisis anterior o adenohipófisis a través del sistema porta-hipofisiario, usualmente se clasifican en: <u>Hormonas liberadoras:</u> (CRH = hormona liberadora de corticotropina; TRH: hormona liberadora de tirotropina; GnRH: hormona liberadora de gonadotropinas, ...) y <u>hormonas inhibidoras</u>: (somatostatina, dopamina, ...), en la hipófisis anterior estas hormonas provenientes del modulan la síntesis y secreción de <u>hormonas hipofisiarias</u> (FSH y LH o gonado*tropinas*, ACTH o cortico*tropinas*, TSH o tiro*tropina*, prolactina, endorfinas, GH o somato*tropina*)

4) ¿Cuáles son las hormonas hipofisiarias que son inhibidas por la somatostatina y por la dopamina?

La pituitaria es una glándula que tiene como función ser un intermediario entre el Sistema Nervioso Central y los diferentes órganos del cuerpo, este fin lo logra por medio de la liberación de hormonas al torrente circulatorio, que eventualmente alcanzan sus órganos diana y ejercen sus efectos. En resumen, <u>los ejes hipotálamo-pituitaria-glándula</u> consisten en 1) células hipotalámicas parvo celulares que liberan <u>hormonas liberadoras</u> al sistema porta, 2) las hormonas liberadoras se transportan a la pituitaria donde promueven la liberación de <u>hormonas "tropinas</u>" al torrente circulatorio, 3) las hormonas de la pituitaria alcanzan su órgano blanco y promueven la liberación de <u>hormonas producidas por el órgano (glándula) blanco</u>.

Estos ejes hipotálamo-pituitaria-glándula están controlados por medio de sistemas de retroalimentación negativa, es decir, las concentraciones aumentadas de una hormona producen una disminución en su propia producción. Estos efectos de retroalimentación negativa ocurren al

menos a nivel del mismo órgano periférico, a nivel de la pituitaria y a nivel del hipotálamo. Es importante notar que estos sistemas son solo uno de los mecanismos de control endócrino, <u>otras variables pueden tener un efecto importante en la regulación de la secreción hormonal</u> (ritmos circadianos, estado metabólico, estrés, temperatura, etc.)

- 5) Da un ejemplo coloquial de retroalimentación negativa
- 6) ¿cómo defines retroalimentación positiva?, ¿cuál hormona puede tener para su liberación un mecanismo de retroalimentación positiva?

Cuando alguno de estos puntos de control (hipotálamo, pituitaria o glándula) se afecta, es esperable observar cambios en las concentraciones de hormonas circulantes y en la función de los órganos blanco. En términos generales: si hay un aumento de las hormonas circulantes, los órganos diana se hipertrofian; si hay una disminución de las hormonas circulantes, los órganos diana se hipotrofian.

7) ¿Qué es hipertrofia e hipotrofia?

Por ejemplo: El eje hipotálamo-pituitaria-adrenal (HPA) tiene como último paso la liberación de cortisol por la corteza suprarrenal, el efecto biológico del cortisol es favorecer el catabolismo (degradar proteínas y grasas para poder usarlas como fuente de energía) y promover un estado antinflamatorio (suprime la respuesta inmune e inflamatoria). En condiciones normales la activación de este eje ante un estresor permite hacer frente a un estresor de una manera más apta. Sin embargo, cuando hay un estrés severo y crónico, se observa atrofia muscular y de los órganos del sistema inmune.

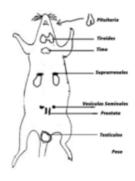
- 8) Describe los efectos de un exceso y una carencia de: hormonas tiroideas, cortisol y LH en machos adultos
- 9) ¿Qué síndromes son típicos ejemplos de un hipercortisolismo y de un hipocortisolismo?
- 10) ¿Por qué los efectos de un hipotiroidismo son diferentes en la edad adulta que en el desarrollo?

Material y métodos

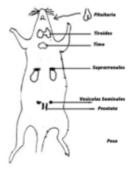
Tabla para registrar el peso de diferentes órganos

Datos de autopsias (anexo 1)

Computadora con programa para hacer estadística básica (Excel, Libre-office, Prisma, etc.)


Experimento.

Se usaron ratas "Wistar virtuales" machos, de 90 días obtenidas del bioterio virtual de la facultad de medicina, que se mantuvieron con un ciclo de luz/oscuridad de 12h/12h, a temperatura y humedad constante, las ratas vivieron en grupos de 3 ratas por caja y tuvieron comida y agua *adlibitum* hasta el día del experimento. A los 75 días se realizó bajo anestesia general, una orquiectomía en 42 ratas (en 42 animales controles solo se realizó la manipulación quirúrgica sin realizar la resección de los testículos), posteriormente a la cirugía se dejó un periodo de recuperación de 15 días, al final de la cirugía y durante los 3 días siguientes se administró ketorolaco.


- ¿Por qué se realizó una cirugía en los animales controles?
- ¿Qué factores se controlaron en este experimento? ¿Qué hubieras añadido o cambiado?

Al día 90, se sacrificaron 6 ratas control y 6 ratas castradas, y se pesaron diferentes órganos (Pituitaria, tiroides, adrenales, timo, testículos, próstata, vesículas seminales), abajo se muestran los resultados obtenidos.

Autopsias controles (sin tratamiento hormonal)

	control inta	cto						
					ves.seminal			
	pituitaria	tiroides	timo	adrenales	es	prostata	testiculos	peso
rata 1	12.9	250	475	40	500	425	3200	340
rata 2	13	230	490	36	510	430	3100	330
rata 3	15	260	470	39	490	436	3250	310
rata 4	12	253	485	45	486	410	3400	250
rata 5	12.5	245	473	42	510	400	3500	295
rata 6	14	263	460	38	507	450	3000	350

	Control Cast	rada							
					ves.seminal				
	pituitaria	tiroides	timo	adrenales	es	prostata	testiculos	peso	
rata 1	12.9	250	480	40	450	387			270
rata 2	14	280	495	47	445	390			275
rata 3	14	240	465	34	432	360			300
rata 4	13	250	450	44	459	383			270
rata 5	11	251	469	46	453	398			260
rata 6	14	243	486	35	460	400			265

El mismo día se colocaron en 36 ratas bombas de liberación continua de las siguientes hormonas: (TRH, TSH, ACTH, Cortisol, Testosterona, LH), la dosis administrada fue la suficiente para incrementar los niveles plasmáticos en plasma aproximadamente 10 veces. Las bombas de liberación continua administran una dosis continua del fármaco durante 30 días. En 36 ratas se colocaron bombas que solo liberan solución salina. Cada grupo consistió en 6 ratas. A los 120 días se registró el peso corporal y sacrificó a los animales por una sobredosis de pentobarbital. Se realizó una autopsia, colectándose y pesándose los siguientes órganos: Pituitaria, tiroides, adrenales, timo, testículos, próstata, vesículas seminales.

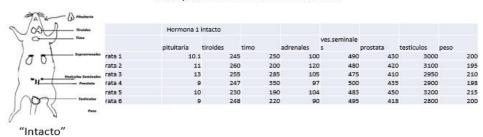
• De acuerdo con tus conocimientos de fisiología completa la siguiente tabla de acuerdo con el peso que esperas encontrar en caso de la administración de cada una de estas hormonas en los animales castrados y no castrados. Pon (+) si aumenta el peso, (-) si disminuye el peso, (sc) si no hay cambios.

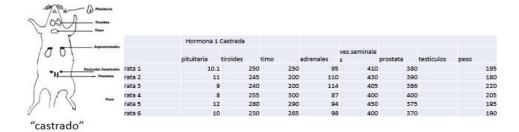
	Т	RH	1	TSH .	А	СТН	Co	rtisol	Testo	sterona		LH
	Intacto	Castrado										
Pituitaria												
Tiroides												
Adrenales												
Timo												
Testículos												
Próstata												
Vesículas seminales												
Peso												

El nuevo estudiante de maestría a quien se dejó encargado de realizar el procedimiento (después de haberle enseñado a hacerlo con las ratas control castradas e intactas), realizó el procedimiento de acuerdo con lo indicado, enlistó los pesos de cada grupo, pero olvidó marcar a qué grupo (hormona administrada) pertenecía cada lista. Las listas recabadas se encuentran en el anexo 1: autopsias.

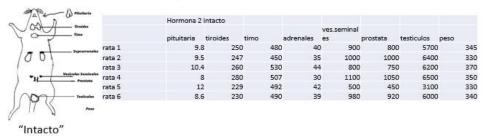
Con base a la tabla que completaste y los datos de las autopsias realiza las siguientes actividades:

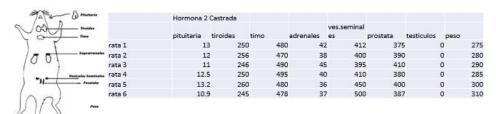
- 1) Organiza los datos
- 2) Realiza las pruebas estadísticas básicas para obtener el promedio y la desviación estándar
- 3) Compara si los grupos son diferentes mediante una prueba de t de Student
- 4) Grafica tus resultados y exponlos en la clase, interpretando en base a tu conocimiento de fisiología que hormona se aplicó y cuál es el mecanismo por el que dicha hormona genera los cambios observados.
- 5) Discute qué otras variables fisiológicas o concentraciones hormonales esperan que se modifiquen, y cuáles síntomas presentaría una persona que tuviera dicho trastorno.
- 6) ¿Cuál es la diferencia entre significancia biológica y significancia estadística?
- 7) ¿Porque es importante conocer el tamaño del efecto y no solo guiarnos con saber si un resultado es significativo o no?
- 8) Realiza un reporte de la práctica



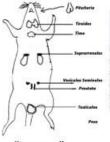

Referencias:

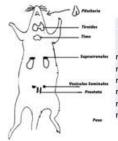
- Laboratory Exercise Using 'Virtual Rats' to Teach Endocrine Physiology" by Odenweller, CM, et al., Advances in Physiology Education273:S24-40, 1997
- Rhoades & Bell. Fisiología Médica. Fundamentos de Medicina Clínica. 5a Edición. Wolters Kluer-Lippincott William & Wilkins. 2018.
- Guyton & Hall. Tratado De Fisiología Médica. 13 a Edición. España: Elsevier, 2016
- Williams. Tratado de Endocrinología. Melmed, Polonsky, Larsen, Kronenberg. 13ª Edición. Elsevier. 2017


Anexo 1 Autopsias


Autopsias Tratamiento hormonal 01

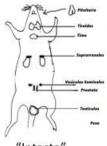
Autopsias Tratamiento hormonal 02



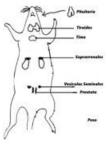


Autopsias Tratamiento hormonal 03

	Hormona 3	intacto						
	pituitaria	tiroides	timo	adrenales	ves.semina les	prostata	testiculos	peso
rata 1	10.2	252	470	38	1400	900	2400	510
rata 2	11	240	490) 42	1500	1000	2000	500
rata 3	9	260	480) 49	1600	1200	1900	510
rata 4	9.3	255	530	33	1300	1500	1600	490
rata 5	8.5	245	450	40	1550	2000	1300	489
rata 6	8	250	435	39	1250	1200	2000	500


"Intacto"

	Hormona 3	Castrada						
	pituitaria	tiroides	timo	adrenales	ves.semina les	prostata	testiculos p	eso
rata 1	10.1	250	470	41	1200	600	0	460
rata 2	11	247	490	42	1400	1300	0	500
rata 3	10	267	510	37	1500	1000	0	470
rata 4	8.3	240	500	35	1400	1500	0	520
rata 5	9	250	459	45	1300	1700	0	460
rata 6	8	253	465	41	1350	950	0	450

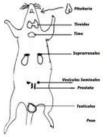

"castrado"

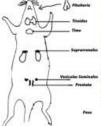
Autopsias Tratamiento hormonal 04

	Hormona 4	intacto						
	pituitaria	tiroides	timo	adrenales	ves.semina les	prostata	testiculos p	eso
rata 1	25	490	462	39	490	400	3150	160
rata 2	30	530	450) 42	500	450	3200	150
rata 3	27	520	460	35	490	390	3300	150
rata 4	24	450	475	45	500	340	3500	170
rata 5	23	490	450	90	450	350	3100	155
rata 6	26	495	458	3 39	460	465	3000	165

"Intacto"

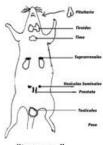
	Hormona 4	Castrada						
	pituitaria	tiroides	timo	adrenales	ves.semina les		testiculos p	eso .
rata 1	25.7	495	460	38	500	375	0	144
rata 2	27	500	450	35	500	450	0	150
rata 3	28	480	440	30	430	340	0	150
rata 4	25	495	490	50	460	400	0	160
rata 5	22	505	460	43	460	380	0	165
rata 6	23	530	465	45	410	360	0	140


"castrado"

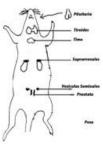


Autopsias Tratamiento hormonal 05

	Hormona 5	intacto						
	pituitaria	tiroides	timo	adrenales	ves.seminal es	prostata	testiculos	peso
rata 1	9.8	245	150	30	475	410	3200	150
rata 2	10	250	120	25	480	390	3100	140
rata 3	9	260	130	45	450	400	3300	160
rata 4	8	230	130	20	500	430	3100	150
rata 5	10	240	190	22	480	415	3100	155
rata 6	11	250	150	35	460	410	2900	162


"Intacto"

	Hormona 5	Castrada						
	pituitaria	tiroides	timo	adrenales	ves.seminal	prostata	testiculos	peso
rata 1	9.7					to open and a size		
rata 2	12	2 250	145	30	450	390	0	14
rata 3	8	3 260	110	32	430	385	0	16
rata 4	8	3 237	7 160	33	490	400	0	13
rata 5	9	240	170	29	430	400	0	13
rata 6	10	250	120	25	450	370	0	14


"castrado"

Autopsias Tratamiento hormonal 06

Hormona 6	intacto						
pituitaria	tiroides	timo	adrenales	ves.seminal es		testiculos p	peso
	8 50	0 455	37	480	405	2790	152
	7 520	500	40	500	402	3000	160
,	9 550	0 459	42	510	450	2500	155
1	0 50	0 440	35	500	378	2900	160
	8 470	950	40	493	400	3500	160
	7 50	0 440	38	500	390	3600	150
	pituitaria 1	8 50 7 52 9 55 10 50 8 47	pituitaria tiroides timo 8 500 455 7 520 500 9 550 455 10 500 444 8 470 450	pituitaria tiroides timo adrenales 8 500 455 37 7 520 500 40 9 550 459 42 10 500 440 35 8 470 450 40	ves.seminal pituitaria tiroides timo adrenales es 480 455 37 480 7 520 500 40 500 9 550 459 42 510 10 500 440 35 500 8 470 450 40 493	ves.seminal ves.seminal pituitaria tiroides timo adrenales es prostata 8 500 455 37 480 405 7 520 500 40 500 402 9 550 459 42 510 450 10 500 440 35 500 378 8 470 450 40 493 400	pituitaria tiroides timo adrenales es prostata testiculos particularia es prostata es prostata testiculos particularia es prostata es prostata testiculos particularia es prostata es pros

"Intacto"

	pituitaria	tiroides	timo	adrena		es.seminal	prostata	testiculos	peso
rata 1			05	461	37	445	375	0	145
rata 2		7 5	10	460	35	470	360	0	150
rata 3		9 4	95	450	39	460	400	0	140
rata 4		8 5	30	464	42	500	360	0	155
rata 5	1	0 4	95	470	44	400	350	0	150
rata 6		7 5	00	457	33	490	310	0	145

"castrado"

